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Cortical neurons are exposed to a considerable amount of synaptic background activity, which increases the
neurons’ conductance and which leads to a fluctuating membrane potential. Here we investigate how the
presence and the properties of this background noise influence the ability of a neuron to detect transient inputs,
a task that is important for coincidence detection as well as for the detection of synchronous spiking events in
a neural system. Using a leaky integrate-and-fire neuron as well as a biologically more realistic Hodgkin-
Huxley type point neuron we find that noise enhances the detection of subthreshold input pulses and that the
phenomenon of stochastic resonance occurs. When the noise is colored, pulse detection becomes more robust,
because the number of false positive events decreases with increasing temporal correlation while the number of
correctly detected events is almost unaffected. Therefore, the optimal variance of the noise also changes with
the degree of temporal correlations of the background activity. For the integrate-and-fire model these effects
can be described using an ansatz by Brunel and SergifJ. Theor. Biol.195, 87 s1998dg. Numerical simulations
show that the leaky integrate-and-fire model and the Hodgkin-Huxley type point neuron behave qualitatively
similarly.
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I. INTRODUCTION

Recent experiments and modeling studies have shown
that cortical neurons receive a large number of simulta-
neously active inputs that give rise to so-called high conduc-
tance states and that induce strong fluctuations of the neu-
rons’ membrane potentialf1g. Much work in theoretical
neuroscience has been devoted to explaining this high level
of background noise and to understanding its role for neural
information transmission and neural computation. In previ-
ous studies it has been suggested that noise may facilitate
fast information transfer through a population of neuronsf2g,
may tune the gain of a neuron’s transfer functionf3g, or may
allow the transmission of otherwise subthreshold inputs, for
example, through the phenomenon of stochastic resonance
f4–16g ssee f17g for a general review on stochastic reso-
nanced.

In this contribution we concentrate on the last effect of
background noise and ask the question of how these back-
ground inputs contribute to the transmission and the process-
ing of subthreshold inputs. Stochastic resonance has been
experimentally observed in neural systemsssee, e.g.,f5,6gd,
and there is a lively discussion in the literature of whether
this effect is actually of functional importancef7,8g. In the-
oretical work stationaryf11g, sinusoidalf4g, or general con-
tinuous time-dependent inputsf18g have been considered,
ways of adaptively optimizing the level of noise have been
suggestedf12g, and stochastic resonance has been analyzed
for single neurons and neuronal populationsf9,13g. In most
of the cases, however, the investigations dealt with the prob-
lem of information transmission rather than with the more
general and maybe more adequate problem of information
processing.

A simple computation a neuron can perform is the detec-
tion of pulses as they may, for example, occur through coin-
cidences of spikes or of events of synchronous neural activ-

ity. These computations can be formulated as a special case
of the task to reliably detect and respond to a transient input
and have experienced increasing attention in the recent past
ssee, e.g.,f19–21gd. In particular neural synchronyf22,23g is
widely believed to be an important element of cortical pro-
cessing, but recent experimental findings also point to the
importance of specific spike sequencesf24g, which may give
rise to transient events if proper delays are present. But how
can transient inputs be optimally detected, if a neuron is
embedded in a background of noise, and how can subthresh-
old input pulses be transmitted using, for example, the
mechanism of stochastic resonance?

Motivated by these questions, we have investigated the
response of a single model neuron to brief subthreshold input
pulses. Since the basic neural task is to detect a pulse we
quantify the performance in terms of the detection error
given by the sum of the probability of missing a pulse and
the normalized number of false positive events.

This is different from the classic stochastic resonance sce-
nario where performance is usually quantified using
signal-to-noise ratiosf11,25g, cross-correlation measures
f26g, or the mutual information between input and output
f18g. These approaches, however, were predominantly con-
cerned with the reliable transmission of signals rather than
with a detection task as an example of asthough still very
simpled computation.

In order to make contact with the current theoretical lit-
erature, we concentrate on two approaches. First we consider
a leaky integrate-and-firesLIFd neuron, because it is simple
enough to be analyzed mathematicallyf27,28g. Then we in-
vestigate a Hodgkin-HuxleysHHd type point neuron, be-
cause in this way we can incorporate additional effects re-
sulting from input-driven changes in the membrane
conductancef29g. In both cases, the neuron additionally re-
ceives background noise inputs, which are generated by an
Ornstein-Uhlenbeck process, and which affect the membrane
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potential for the LIFscurrent noised and for the HHsconduc-
tance noised neuron models. Experimental findingsf1,30g
demonstrate that colored noise, rather than white noise, pro-
vides the best model for the background input. Here we also
investigate the role of those temporal correlations, because
only little work has been devoted to understanding the im-
pact of these temporal correlations on neural information
transmission and processingf31–34g.

Our paper is organized as follows. In Sec. II we present
the pulse detection scenario and we quantify pulse detection
performance. The noisy LIF and HH neuron models are de-
scribed in Secs. III and IV. Results for the LIF neuron are
shown in Secs. Vsnumerical resultsd and VI sanalytical re-
sultsd. The corresponding numerical results for the HH neu-
ron are shown in Sec. VII.

II. THE PULSE DETECTION SCENARIO

We consider a single neuron, which receives a train of
subthreshold pulses and additive colored noise as inputs. The
details of the neuron models are described in the following
sections; here we consider the problem of pulse detection.

The input pulse train is regular, but the time interval be-
tween two successive pulses is large compared to the mem-
brane time constant and to the time constant of the temporal
correlation of the additive noise, so that the preceding pulse
has no significant influence on the following one. Figure 1
shows a typical trace of the resulting membrane potential for
the case of the LIF model. The input pulses are marked by
arrowheads on thex axis; the output spikes are marked by
the vertical lines going upward and crossing the spike thresh-
old of the neuron. The trace shows that there are several
incidences where an input pulse is immediately followed by
a spike. We will call this pair of events a correctly detected
pulse. However, there are also several incidences where the
neuron does not respond to the pulse or where a spike occurs
in the absence of a signal input. If we interpret the presence
of a spike as a signature for the presence of an input pulse,
the latter events correspond to the errors the neuron makes in
the detection task.

In order to quantify the neuron’s response to the pulse
train we consider the total error. The total error is the sum of
a term that is proportional to the number of the false positive
events and a term that is proportional to the number of pulses
that are not detected, i.e., that are not immediately followed
by an output spikessee the sections on the LIF and HH
neurons for detailsd. Let us consider a regular pulse train
which consists ofn equidistant pulses, separated by a time
interval DT. The fractionPm of missed pulses is then given
by Pm=1−Pc, whenPc is the fraction of correctly detected
pulses. The total number of false positives, divided by the
total number of input pulses, is denoted asPf. sNote thatPf
can easily take on values larger than 1.d We then define the
total errorQ for pulse detection as the sum

Q = Pm + Pf . s1d

Note that the value ofQ depends indirectly on the interpulse
interval DT. For longer intervalsDT but fixed n more false
positive events are likely to occur, so that the total error
grows with increasingDT.

III. THE LIF MODEL WITH COLORED NOISE

In the LIF neuron modelsseef27,29g for an introductiond,
the membrane potentialVt of the neuron changes in time
according to the differential equation

dVt

dt
= −

1

tV
sVt − Vresetd + Xt, s2d

wheretV is the membrane time constant andXt is the noise
input at time t. Throughout this contribution we usetV
=5 ms. Once the membrane potential reaches a threshold
Vth sVth=−45 mVd, a spike is generated and the membrane
potential is reset toVreset sVreset=−65 mVd.

The noise inputXt is given by an Ornstein-Uhlenbeck
processsseef27g for an introductiond, which corresponds to
low-pass filtered white noise with a time constanttX and a
diffusion coefficientD,

dXt

dt
= −

1

tX
Xt + ÎD

dWt

dt
. s3d

dWt are the infinitesimal increments of the Wiener process.
Equationss2d and s3d are solved using the Euler integration
schemessee Appendix Ad. Figure 2 shows a typical trace of
the membrane potential for colored noise input with two dif-
ferent time constantstX.

The signal input is modeled as a series of narrow rectan-
gular pulses with widthtp stp=0.1 msd which generate a
voltage jump of variable heightVp. These pulses are injected
with a repetition frequency of 1/DT, whereDT is the time
interval between two subsequent pulses. A pulse is said to be
detected if the membrane potential reaches the threshold
within 0.1 ms after the injection of the current pulse. Differ-
ent noise conditions are modeled by changing the time con-
stant tx and the diffusion coefficientD of the Ornstein-
Uhlenbeck process. If the spike process is omitted, i.e., if we
only consider the unconstrained dynamics of the membrane
potential, Eqs.s2d ands3d, a change in the parameterstX and

FIG. 1. Typical trace of the membrane potential of a LIF neuron,
Eq. s2d, which receives colored noise inputftX=1 ms, D
=22 mV2/ms; cf. Eq.s3dg and a train of subthreshold input pulses
s5 Hz; pulse parameters, widthdt=0.1 ms, heightVp=18 mVd. The
time of occurrence is indicated by arrowheads on thex axis for the
input pulses and by vertical lines going upward for the output
spikes. Threshold and reset potentials are −45 and −65 mV.
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D affects the variance ofVt but not its mean. The relation
between the variance ofVt and the parameters of the
Ornstein-Uhlenbeck process is given in Eq.s13d in Sec.
VI A. We will use the variance value in order to characterize
the “strength” of the noise.

IV. THE HH POINT NEURON WITH COLORED NOISE

In the HH point neuron modelsseef29,35g for an intro-
ductiond, the membrane potentialV changes in time accord-
ing to the differential equation

Cm
]Vt

]t
= − IL − INa − IK − IM − Isyn− Istim. s4d

The left hand side of this equation describes the influence of
the membrane’s capacitanceCm, while all ionic currents
through the cell’s membrane, including the synaptic noise
sIsynd and the synaptic stimulussIstimd currents, are summed
on the right hand side. Followingf30g we consider the fol-
lowing intrinsic currents: a leak currentIL=−gLsV−ELd, the
spike-generating sodiumsINad and potassiumsIKd currents,
and a noninactivating potassium currentsIMd which is re-
sponsible for spike frequency adaptation. Details of the in-
trinsic currents and model parameters are listed in Appendix
B. They were chosen according tof30,36g and are consistent
with available experimental data from neocortical pyramidal
neurons.

The total synaptic noise currentIsyn is generated by fluc-
tuating synaptic conductances. These conductances are
thought to be induced by stochastic spike trains which arrive
at the excitatory and the inhibitory synapses of the neuron.
Following f30g we set

Isyn= getsVt − Eed + gitsVt − Eid, s5d

whereget and git are the conductances of the excitatorysed
and inhibitorysid synapses, andEe andEi are the correspond-
ing reversal potentials. The time-dependent conductances are
effectively described as an Ornstein-Uhlenbeck process

dget

dt
= −

1

te
fget − age0g + aÎDe0

dWt

dt
, s6d

dgit

dt
= −

1

ti
fgit − agi0g + aÎDi0

dWt

dt
, s7d

where te,ti are the time constants,ge0,gi0 are the average
values of the synaptic conductances, andDe0,Di0 are the
diffusion coefficients. Different noise conditions are modeled
by changing the synaptic conductances and the square root of
the diffusion coefficient by a common gain factora. Since
the Ornstein-Uhlenbeck process models the cumulative ef-
fect of many stochastic processes this corresponds to a sim-
plistic model of the effect of increasing the synaptic peak
conductances. The parameters of the Ornstein-Uhlenbeck
processes are chosen in such a way that they resemblein
vivo–like activity f30g ssee Appendix Bd.

The average synaptic noise current is balanced, i.e., it is
zero just below thresholds3.5 mVd because the inhibitory
and the excitatory currents have opposite sign but equal
strength. If the mean impacts of excitation and inhibition
cancel, a change in the parametera leads to a change in the
higher moments of the fluctuations of the membrane poten-
tial only. For other values ofVt, however, a change ina also
induces a shift of the average value ofVt.

The signal inputIstim is modeled as a series of narrow
rectangular current pulses with widthtp stp=0.4 msd, with
variable strengthIp, and with a repetition frequency of 1/DT,
whereDT is the time interval between two pulses. A current
pulse is said to be detected if the HH neuron spikes within 5
ms after the application of a current pulse.

V. LEAKY INTEGRATE-AND-FIRE MODEL: RESULTS

Figure 3 shows the total errorQ as a function of the
variance of the unconstrained membrane potential for differ-
ent values of the time constanttX of the noise. In case of the
LIF neuron we refer to the “variance of the membrane po-
tential” when the variance is calculated according to Eq.
s13d, without the spike-reset mechanism. The diffusion coef-
ficient D was always adjusted to keep the variance ofVt fsee
Eq. s13dg constant whentX was changed. The figure demon-
strates that stochastic resonance curves emerge, and that the

FIG. 2. Trace of the membrane potential of a LIF neuron for
colored noise inputs with the two different time constantstX

=1 mss0–1000 msd andtX=10 mss1000–2000 msd. The diffusion
coefficientD was adjusted to keep the variance of the membrane
potential constant,D=2.2 mV2/ms sleftd and D=0.04 mV2/ms
srightd.

FIG. 3. Total errorQ, Eq. s1d, as a function of the variance of
the membrane potential, Eq.s13d, for the LIF model for different
values oftX stX=1,5,10,15 msd. D is adjusted to keep the vari-
ance of Vt fsee Eq. s13dg constant whentX is changed.Vp

=18 mV, DT=200 ms. Simulation results forQ were obtained by
integrating Eqs.s2d and s3d and including the spike-reset process.
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presence of temporal correlationssfinite values oftXd im-
proves pulse detection. IftX becomes larger, the minimum of
Q decreases and becomes more shallow. The latter effect
makes pulse detection more robust against a suboptimal
choice of the variance ofVt.

Figure 4 shows the total errorQ as a function of the
variance of the membrane potential for several pulse heights
and for short-fFig. 4sadg as well as long-rangefFig. 4sbdg
temporal correlations of the noise. If input pulses are strong
enough to make the neuron fire, performance is best if no
noise is present. For subthresholdsexcept for the weakestd
pulses, stochastic-resonance-like curves appear and a finite
optimal strength of the noise exists.

Figure 5 shows the fractionPm of missed pulsesfFig.
5sadg, and the fractionPf of false positivesfFig. 5sbdg as a
function of the variance of the membrane potential, again for
different values of the time constanttX. The temporal corre-
lations of the noise inputs do not affect the number of missed
detections; improved performance is exclusively due to a
decrease in the number of false positives.

Figure 6 shows the optimal noise level in terms of the
variance of the unconstrained membrane potential as a func-
tion of the height of the input pulses. The lower and upper
curves correspond totX=1 and 10 ms. Pulses that induce
jumps larger than 20 mV are suprathreshold, and any noise
inputs are detrimental. BelowVp=20 mV one observes a
nonmonotonic dependence of the optimal noise level on the
strength of the input pulses and a pronounced maximum for
intermediate pulse heights. For larger values oftX, the maxi-
mum shifts to larger noise levels. We will discuss these find-
ings in more detail in Sec. VI Dse.g., Fig. 10d.

VI. ANALYSIS OF THE LIF MODEL

A. Second-order moments

In order to derive expressions for the second moments
kXt

2l , kXtVtl, andkVt
2l sk l denotes an ensemble averaged we

consider the discrete versionsEuler integrationd of Eqs. s2d
and s3d,

Xt+1 = Xt −
1

tX
Xtdt + ÎDdWt, s8d

Vt+1 = Vt −
1

tV
Vtdt + Xtdt, s9d

in the absence of the fire-and-reset mechanism, wheredWt
are the infinitesimal increments of the Wiener process. After
multiplication of the left and right hand sides of Eqs.s8d and
s9d and after taking an ensemble average we obtain

dkXt
2l

dt
+

2

tX
kXt

2l = D, s10d

dkXtVtl
dt

+
1

t̃
kXtVtl = kXt

2l, t̃ =
tXtV

tX + tV
, s11d

dkVt
2l

dt
+

2

tV
kVt

2l = 2kXtVtl, s12d

where we made use of the fact thatkXtdWtl=0 and where all
terms of order larger than 1 indt were neglectedf37g. The
stationary state is then given by

kXt
2l =

DtX

2
, kXtVtl =

DtXt̃

2
, kVt

2l =
DtXtVt̃

2
. s13d

B. Probability of correct detection

Equationss13d describe the second moment of the mem-
brane potential in the absence of pulses and the firing-and-

FIG. 4. Total errorQ, Eq. s1d, as a function of the variance of
the membrane potential, Eq.s13d, for the LIF model for the case of
short-,tX=1 ms,sad and long-range,tX=10 ms,sbd, temporal cor-
relations. Different lines correspond to different pulse heightsVp

=1,2,3,… ,24 mV stop to bottomd. DT=200 ms. Pulses that in-
duce voltage jumps smaller than 20 mV are subthreshold. Simula-
tion results are obtained by directly integrating Eqs.s2d ands3d and
including the spike-reset process.

FIG. 5. FractionPm of missed pulsessad and the normalized
numberPf of false positivessbd as a function of the variance of the
membrane potential, Eq.s13d, for the LIF neuron. Different curves
correspond to different choices of the parametertX=1, 5, 10, 15 ms.
D was again adjusted to keep the variance ofVt constant. Pulse train
parameters as in Fig. 3. Simulation results are obtained by directly
integrating Eqs.s2d and s3d and including the spike-reset process.

FIG. 6. Optimal noise level for signal detection, in terms of the
total errorQ, as a function of the height of the input pulses for the
LIF model. The upper and lower curves correspond totX=10 and 1
ms. For small pulse heights and for pulse heightsù20 mV the
optimal noise level is zero. Simulation results are obtained by di-
rectly integrating Eqs.s2d and s3d and including the spike-reset
process.
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reset mechanism. We now describe the stationary probability
distribution of the fluctuating membrane potential by a
Gaussian distribution with its mean set to the reset potential
−65 mV and with variancesV

2 = 1
2DtXtVt̃. If a narrow input

pulse arrives, the membrane potential is instantaneously
shifted by an amountVp, and the probability that the mem-
brane potential becomes suprathreshold is given by

Pc = 0.5 erfcSVth − Vp − Vreset

Î2sV
D , s14d

which is equal to the probability of correct detection; erfc is
the complementary error function.

Figure 7 shows the fractionPC of correctly detected
pulses according to a numerical evaluation of Eqs.s2d and
s3d in comparison with the probability of correct detection
calculated according to Eq.s14d. Equations14d provides a
good approximation of PC for sub- as well as for
suprathreshold input pulses. Small deviations from Eq.s14d
occur for large values ofkVt

2l and small pulse heights. In this
regime the Gaussian assumption for the membrane potential
distribution is violated.

C. False positive rate

If Vp is set to 0 mV, Eq.s14d corresponds to the probabil-
ity of emitting a false positive spike. If this probability is
high, however, the above approach is no longer appropriate
because it discards the effects of a prolonged probability flux
across the threshold. A better result can be obtained using an
approach suggested by Brunel and Sergif28g.

Brunel and Sergi provide expressions for the spiking fre-
quency of a LIF neuron with low-pass filtered Gaussian
white noise, as described by Eqs.s2d ands3d. They show that
the spike frequency of such a neuron can be reduced to that
of a basic LIF neuronstX=0d using aneffectivethreshold
uef f. For values oftX.0 the effective threshold is given by

the sum of the thresholdu and two correction terms of first
and second order inÎtX/tV, as demonstrated in their paper.

Using cswd=expsw2dferfswd+1g and s=ÎDtVtX the
mean first passage timekTfl according tof28g is

kTfl = tV
ÎpE

Vreset/s

uef f/s

cswddw, s15d

in which uef f,

uef f = u + ssn1k + n2k
2d, k =ÎtX

tV
, s16d

is the effective threshold with parametersn1 and n2, which
are determined using a least-squares fitting proceduressee
Appendix Cd.

Pf is then given by the expected number of spikes in an
interpulse interval,Pf =DT/ kTfl.

Figure 8 showsPf as a function oftX for different values
of the funconstrained, Eq.s13dg membrane potential. The
number of false positive events decreases with increasingtX
and the effect is nicely predicted by Eqs.s15d ands16d. This
reduction is caused by a reduction of the number of rapid and
large fluctuations of the membrane potential. After a reset to
Vreset it takes more time on average for the membrane poten-
tial to reach the threshold againfcf. Eq. s15dg.

D. Quality of pulse detection

Figure 9 shows the numberPf of false positive events per
input pulse, and the total errorQ as a function of the vari-
ance, Eq.s13d, of the membrane potential and for different
values of the correlation time constanttX. Results obtained
by integration of Eqs.s2d and s3d including the spike-reset
mechanism and results obtained by evaluating Eqs.s14d and
s15d are superimposed. The number of false positive events
per input pulse decreases with increasing time constant of the
temporal correlationfsee Fig. 9sadg. The total errorQ is plot-
ted in Fig. 9sbd. It shows a minimal value at an optimal value
of sV, which—however—depends ontX. WhentX increases,
the number of false positives becomes smaller and the total

FIG. 7. Fraction of correctly detected input pulses as a function
of the variance of the membrane potential for the LIF model. Thin
solid line with dots: fraction of correctly detected input pulses by
numerical evaluation of Eqs.s2d and s3d including the spike-reset
process. Thick solid line: probability of correct detection according
to Eq. s14d. The variancesV

2 of the membrane potential was
changed by changingD. The different pairs of lines correspond to
Vp=7, 11, 15, 19, 23 mV. Pulses that induce changes that are larger
than 20 mV are suprathreshold.DT=200 ms,tX=1 ms.

FIG. 8. Normalized numberPf of false positives versustX. The
vertices of the solid polygon showPf faccording to Eq.s15dg for
different values of the membrane potential variancessV

2

=40,60,80,100 mV2 sbottom to topd. Crosses: numerical evalua-
tion of Eqs.s2d and s3d including the spike-reset process. For one
line, D was always adjusted to keep the variancesV

2 constant.
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error decreases, too. The parametersn1 andn2 from Eq.s15d
were fitted using the least-squares methodsparameters and
details are given in Appendix Cd.

In Fig. 6 we have shown that the optimal noise level, i.e.,
the optimal value forsV, is a nonmonotonic function of the
pulse heightVp. This effect is also well described by Eqs.
s14d ands15d. Figure 10 shows the total errorQ, the normal-
ized numberPf of false positive events, and the probability
Pm of not detecting an input pulse, as a function of the vari-
ancesV

2 of the membrane potential and for different values of
the heightVp of the input pulses. The optimal level for the
variance of the membrane potential is indicated by dots.
SincePf does not depend on the signal input, the nonmono-
tonic dependence of the optimal variance is due to changes
in Pm only. A characteristic of the optimal noise level is that
the slopes ofPf andPm versus the membrane potential vari-
ance match each other.Pf as a function of the noise level first
starts with a very small slope, but grows vigorously with
increasing noise. In the regime wherePf starts growing,Pm
has a small slope for very weak pulses and large subthresh-
old pulses. For intermediate pulse heights, the slope ofPm
versus the membrane potential variance is larger; thus the
optimal noise level is shifted to higher values.

VII. SIMULATION RESULTS
FOR THE HODGKIN-HUXLEY MODEL

In this section we investigate, whether and under what
conditions the predictions of the LIF model carry over to the
biophysically more realistic HH framework. The correlation
structure of the noise inputs for the HH model is more com-
plicated than for the LIF model. It must be described by two
time constants, one for the excitatory,te, and one for the
inhibitory, ti, synaptic inputsfEqs.s6d ands7dg. As a conse-
quence of this and of the fact that the HH model is math-
ematically more complicated, no exact closed expression can
be derived for the variance of the membrane potential as a
function of the other model parameters. We, therefore,
adopted the following strategy. We chose a value fora, Eqs.
s6d ands7d, which is small enoughsa=0.3d so that the mem-
brane potential remains subthreshold. We then
constructed—by trial and error—three setshte,ti ,De0,Di0j
of parametersssee caption of Fig. 11d. First the correlation
structure of the noise inputs was changed by changing the
values of the excitatory and inhibitory time constants. Then
the diffusion constants were adjusted so that the variances of

FIG. 9. Number of false positive events per input pulsesad and
the total errorQ sbd as a function of the variancesV

2 of the mem-
brane potential for the LIF model. Thicksand smoothd lines denote
the results obtained with Eqs.s14d ands15d, thin sand wigglyd lines
with small crosses denote the results obtained by integrating Eqs.
s2d ands3d, including the spike and reset process. Different pairs of
lines, from top to bottom insad andsbd, correspond totX=1, 5, 10,
15 ms. The values ofn1 andn2 are given in Appendix C. Parameters
areVp=18 mV, DT=200 ms, other parameters as in Fig. 5.

FIG. 10. Total errorQ, the normalized numberPf of false posi-
tive events, and the probabilityPm of not detecting an input pulse,
as a function of the variancesV

2 of the unconstrained membrane
potential. Different curves correspond to pulse heightsVp

=6,7,… ,19 mV stop to bottomd. Dots indicate the optimal value of
sV

2, i.e., the minimum of the total errorQ. sad Thin sand wigglyd
lines with small crosses: simulation results forQ obtained by di-
rectly integrating Eqs.s2d and s3d and including the spike-reset
process. Thicksand smoothd lines: results forQ are obtained by
evaluating Eqs.s14d and s15d. sbd Pm stop curvesd and Pf sbottom
curvesd calculated according to Eqs.s14d and s15d. Parameters are
tX=1 ms,DT=200 ms.
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the membrane potential—determined by numerically inte-
grating Eq.s4d—matched each other. Pulse detection perfor-
mance was then evaluated as a function of the parametera
with all the other parameters being constantfcf. Eqs.s6d and
s7dg. When a is increased, the variance of the membrane
potential becomes larger while the average value ofV re-
mains sapproximatelyd constant. Whena becomes really
large, however, spiking activity strongly contributes to the
temporal changes of the membrane potential, and its variance
is no longer a proper measure.a on the other hand still is a
good parameter for measuring the strength of noise.

Figure 11 shows the results. In Figs. 11sad and 11sbd the
fraction Pc of correct detections and the normalized number
Pf of false positive events are plotted as a function of the
noise parametera and for the three sets of parameters de-
scribed above. The results are qualitatively similar to the
results of the LIF model. The fraction of correctly detected
events increases with increasing strength of the conductance
noise, and the dependency is almost unaffected by the prop-
erties of the temporal correlations. With higher noise, the
normalized number of false positive events increases, but
stronger temporal correlations lead to a reduction similar to
what is observed for the LIF neuron. Figure 11scd shows the
corresponding “stochastic resonance” curves for the total er-
ror Q. The optimal noise level changes with the heightIp of
the input pulses in a nonmonotonic fashionfFig. 11sddg,
similar to the results for the LIF case.

VIII. CONCLUSION

In this contribution we have demonstrated that the struc-
ture of the temporal correlationssthe “color”d of the mem-
brane potential has a significant impact on pulse detection
performance. Using a sum of missed pulses and false posi-
tive events we showed that a leaky integrate-and-fire neuron
as well as a biophysically more realistic Hodgkin-Huxley
type neuron behave in a similar way. Increasing the correla-
tion time constants of the additive noise makes the detection
of subthreshold pulses more robust. The number of false
positive events is reduced and the optimal value of the noise
parametersvariance of the membrane potential for the LIF
and the noise parametera for the HH modeld is shifted to
higher values. The optimal noise level is not a monotonic
function of the strength of the input signal.

The total error, which is the sum of the fraction of
“missed” pulsessfalse negativesd and the number of false
positive events per interpulse interval, is always larger than
0.5. This is a consequence of the zero mean noise. The prob-
ability that an otherwise subthreshold input pulse gets en-
hanced by a positive fluctuation is equal to the probability
that it is further suppressed by its negative counterpart.
Therefore, the probability of correct detection can never ex-
ceed 0.5. Because of this fact one can question the biological
relevance of the described pulse detection scenario for single
neurons. In the case of populations of neurons, however,
weak transient excitations can be reliably detected and cor-
responding results will be reported in a subsequent study.
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APPENDIX A: EULER APPROXIMATION OF THE
WIENER PROCESS

dWt=Nt
Îdt, whereNt is a normal random variable, vari-

ance 1, anddt corresponds to the length of the time interval
in a standard Euler scheme. For the exact numerical integra-
tion of an Ornstein-Uhlenbeck process seef37g.

APPENDIX B: THE HODGKIN-HUXLEY NEURON

Cm
]V

]t
= − IL − INa − IK − IM − Isyn+ Istim,t, sB1d

where the leak currentIL=gLsV−ELd, and the model param-
eters areCm=1 mF/cm2, gL=0.045 mS, andEL=−80 mV.

Voltage-dependent sodium currentI Na

INa = ḡNam
3hsV − ENad,

dm

dt
= amsVds1 − md − bmsVdm,

FIG. 11. Characterization of the pulse detection performance of
the HH model neuron. The fractionPc of correctly detected events
sad, the normalized numberPf of false positive eventssbd, and the
total errorQ scd is plotted as a function of the noise parametera.
sad–scd The three different curves in each figure correspond to three
sets of parameters; see the text for details. Parameters were
ste0,ti0d=bs2.7,10.5dms, sDe0,Di0d=gs41.7,51.9d nS2/ms, with
sb ,gd=s0.5,1.32d, s1,1d, s2,0.82d. Pulse heightIp=10 nA, inter-
pulse intervalDT=200 ms.sdd Optimal value ofa for pulse heights
Ip=4–11 nA, andsb ,gd=s0.5,1.32d sbottom curved and s2, 0.82d
stop curved. Other parameters as forsad–scd. Pulses are suprathresh-
old for Ip.11 nA. ste0,ti0d=s2.7,10.5d ms was taken fromf30g as
an estimate for a layer VI pyramidal cell in the cat parietal cortex.
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dh

dt
= ahsVds1 − hd − bhsVdh,

amsVd =
− 0.32sV − VT − 13d

expf− sV − VT − 13d/4g − 1
,

bmsVd =
0.28sV − VT − 40d

expf− sV − VT − 40d/5g − 1
,

ahsVd = 0.128 expf− sV − VT − VS− 17d/18g,

bhsVd =
4

1 + expf− sV − VT − VS− 40d/5g
.

Model parameters areḡNa=3 mS/cm2, VT=−58 mV andVS
=−10 mV, ENa=0 mV.

Delayed-rectifier potassium current I K

IK = ḡKn4sV − EKd,

dn

dt
= ansVds1 − nd − bnsVdn,

ansVd =
− 0.032sV − VT − 15d

expf− sV − VT − 15d/5g − 1
,

bnsVd = 0.5 expf− sV − VT − 10d/40g.

Model parameters areḡK =5 mS/cm2 and VT=−58 mV, EK
=−80 mV.

Noninactivating potassium current I M

IM = ḡMpsV − EKd,

dp

dt
= apsVds1 − pd − bpsVdp,

apsVd =
0.0001sV + 30d

1 − expf− sV + 30d/9g
,

bpsVd =
− 0.0001sV + 30d

1 − expfsV + 30d/9g
.

Model parameter isḡM =1 mS/cm2.

Synaptic noise current

Isyn= getsV − Eed + gitsV − Eid. sB2d

Model parameters areEe=0 mV, Ei =−80 mV.

Synaptic conductances

dget

dt
= −

1

te
fget − age0g + aÎDe

dWt

dt
, sB3d

dgit

dt
= −

1

ti
fgit − agi0g + aÎDi

dWt

dt
. sB4d

Model parameterssif not metioned otherwised are ge0
=0.0121mS, gi0=0.0484mS, se0=0.0075mS, si0
=0.0165mS, te=2.7 ms, andti =10.5 ms. For the stationary
membrane potential distributions the relationse,i

2

=0.5sDe,ite,id holds. All simulations were performed in the
NEURON simulation environmentf38g using the point-
conductance model from Destexheet al. as described in
f30,36g.

APPENDIX C: PARAMETERS OF THE ANSATZ BY
BRUNEL AND SERGI

The values forn1 andn2, Eq. s16d, were determined by a
least-squares fit using theMATLAB function NLINFIT. As in

f28g the values ofn2 are a function ofû=Vr /ÎDtVtX
, i.e.,

n2=n2a+n2bû.

tX=1 ms tX=5 ms tX=10 ms tX=15 ms

n1 1.40 1.12 1.07 1.06

n2a −0.19 −0.26 −0.30 −0.31

n2b 0.04 0.21 0.26 0.26

The error in the parameters due to the least-squares fit is
±0.01 s95% confidence intervald.
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